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Background

• Defense and aerospace applications commonly utilize 
laser beam welding (LBW) and electron beam welding 
(EBW) to join highly critical joints

Materials of interest include: 
• 304L Stainless Steel
• Ti-6Al-4V
• Refractory Alloy

• Joint configurations are not always susceptible to post-
weld inspection

https://phys.org/news/2019-07-earth-mars-days-power-
nuclear.html
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Background

• Need to validate weld characteristics 
given parameter inputs

• Weld dimensions
• Penetration depth
• Keyhole width
• Cross-sectional area

• Thermal History
• Microstructural evolution

• How do process parameters 
influence weld geometry and 
microstructural formation
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Background

Process Parameters
• Power 

‒ Voltage and Current (EBW Only)
• Travel Speed
• Focus position
• Beam Diameter
• Beam Profile (intensity distribution)

Material Properties
• Density
• Thermal Conductivity
• Specific Heat
• Thermal Diffusivity
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Background

Beam Parameter Manipulation
• Interaction Time and Specific Point Energy

SPE = P ∗ 𝑡𝑖 [𝐽]

SPE = 28 J SPE = 5.6 J

𝑡𝑖 = Τ𝑑𝑏
𝑣 [𝑠] Where: 𝑑𝑏 = beam diameter

𝑣 = travel speed
𝑃= beam power

𝑡𝑖 = 0.02 s 𝑡𝑖 = 0.004 s
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Literature Review

Suder and Williams, 2012 [1]

• Top-hat beam distribution 
• YLR-8000 IPG laser

Beam diameter = 630 µm



• Incorporation of input parameters and material properties to predict 
penetration depths
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Literature Review

Hann et. al, 2011 [2,3]

Dimensionless depth 

Where:
δ : depth of penetration
δ* : normalized depth
σ : beam radius
B : normalization constant
P : power
U : travel speed
𝜟𝑯 : change in enthalpy 
𝒉𝒔 : enthalpy at melting

𝛿∗ = 𝑓
𝛥𝐻

ℎ𝑠

𝛿∗ = 𝑓 𝐵
𝑃

𝜎3𝑈



• Influence of input parameters on 
solidification modes and 
microstructure
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Literature Review

Lippold, 1994 [4];  Elmer et al., 1989 [5]

[4]

[5]

304L

304L



LBW Parameters

IPG YLS – 4000
• 207.5±2 mm working distance
• 0.5 mm spot size
• 0° beam angle
• Ar plume suppression 15 CFH (trailing)
• 304 S.S.

*slowed by 10 fps 9



LBW Results on 304 S.S.

Travel Speed = 25 mm/sec
Interaction Time (ti) = 20 msec

P = 1000 W
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P = 1200 W

P = 600 W



LBW Results on 304 S.S.

Power = 1400 W
Power Density = 7.1 kW/mm2
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TS = 15 mm/s

TS = 100 mm/s



LBW Results on 304 S.S.

SPE = 30 J
Energy Density = 153 J/mm2
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P = 1500 W

P = 545 W

P = 750 W



LBW Results on 304 S.S.

• Data Normalized Based on Hann et al. [3] Equations 
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐷𝑒𝑝𝑡ℎ =

𝛿

𝜎

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑜𝑤𝑒𝑟 =

𝐵 ∗ 𝑃

𝑠𝑞𝑟𝑡(𝜎3𝑈)

𝐵 = 1𝑥10−7
𝑠1/2

𝐽𝑚2

* For 304 S.S.



LBW Results: Microstructure Evolution

GTA Weld P = 1800 W, TS = 25 mm/s

P = 1400 W, TS = 75 mm/sP = 1400 W, TS = 20 mm/s
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EBW Parameters

Pro-Beam K10
• high voltage system
• ≈200 mm gun to work distance
• 0.5 mm beam diameter
• high vacuum (< 1x10-4 torr)
• 304L S.S.
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EBW Results on 304L S.S.

Constant Voltage = 100 kV
Constant Travel Speed = 25 mm/s
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8mA, 800 W

2mA, 200 W

4mA, 400 W



EBW Results on 304L S.S.

Constant Current = 6mA
Constant Travel Speed = 25 mm/s
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115 kV

95 kV

105 kV 630 W

690 W

570 W



EBW Results on 304L S.S.

Constant Current = 6mA
Constant Voltage = 100 kV
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80 mm/s

40 mm/s

60 mm/s



Conclusions

LBW
• Constant travel speed and beam diameter produced a linear 

increase in keyhole penetration depth
• Constant power showed a non-linear decrease in penetration 

depth
• Travel speed has largest influence on microstructure 

variations in 304 S.S.

EBW
• Increasing current showed an increase in penetration depth
• Increasing voltage showed no correlation with penetration
• Penetration decreased with constant power until travel 

speeds were in excess of 60 mm/s
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Future Work

• Perform in-depth characterization of the weld metal 
microstructures 
‒ Analyze solidification modes, phase fractions, and dendrite 

arm spacing 

• Measure the beam profile of the laser

• Complete laser welds on Ti-6Al-4V and 304L

• Understand the data to produce a predictive tool to 
determine weld geometries based on input parameters and 
material properties

• Produce microstructural maps for solidification profiles and 
phase fractions

20
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